'THE LARVAL STAGES OF TRILOBITES.

- , BY Charles E. Beecher, New Haven, Conn.
[From The American Geologist, Vol. XVI, September, 1895.]
THE LARVAL STAGES OF TRILOBITES.
By CHARLEs E. BeEcher, New Haven, Conn.
(Plates VIII-X.)
CONTENTS.
taken of all the known early larval stages thus far described． This work would have no special interest in itself were it not for the fact，that，with our present understanding of trilobite morphology，it is possible to reach some conclusions of general importance，which have a direct bearing on the significance and interpretation of several of the leading features of the trilobite carapace，and incidentally upon the structure and re－ lations of the nauplius of the higher Crustacea．

II．The Protaspis．
Barrandes recognized four orders of development in the trilobites，as follows：

I．$\{$ Head predominating，incomplete．）Types．
I．$\left\{\begin{array}{l}\text { Thorax nothing or rudimentary．} \\ \text { Pygidium nothing．}\end{array}\right\}$ Suo hirsuta．
II．$\left\{\begin{array}{l}\text { Head distinct，incomplete．} \\ \text { Thorax nothing．} \\ \text { Pygidium distinct，incomplete．}\end{array}\right\} \begin{gathered}\text { Trinuclens ornatus，and } \\ \text { all } \text { Agnostus．}\end{gathered}$
III．$\left\{\begin{array}{l}\text { Head complete．} \\ \text { Thorax disting }\end{array}\right.$ $\left\{\begin{array}{l}\text { Thorax distinct，incomplete．} \\ \text { Pygidium distinct，incomplete．}\end{array}\right\}$ Arethusina konincki．
IV．$\left\{\begin{array}{l}\text { Head complete．} \\ \text { Thorax complete．} \\ \text { Pygidium distinct，incomplete．}\end{array}\right\}$ Dalmanites huusmanni．
A study of these groups shows at once that they form a progressive series in which the first alone is primitive．The others are more advanced stages of development，as shown by the larger size of the individuals，and their having characters which appear successively in the ontogeny of a species belong－ ing to the first order of development．To attain the stage which is represented by actual specimens，they must have passed through earlier stages，which as yett have not been found．Furthermore，it is evident that Barrande did not con－ sider the orders after the first as primitive，and characteristic of the genera cited，for，in some remarks under the third or－ der，he saysis：＂Il est très－vraisemblable，que la plupart des Trilobites de cette section，si ce n＇est tous，devront être un jour transférés dans la première，par suite de la dècouverte probable d＇embryons sans segmens thoracique．＂

The geological conditions necessary for the fossilization of the minute larval forms of trilobites are such，that only in compar，tively rare instances are any of the immature stages preserved．Larval specimens are doubtless often overlooked or neglected by collectors，but generally the sediments are too
coarse for the preservation of these small and delicate organisms. In certain horizons and rocks, however, such remains are quite abundant, and complete ontological series may be obtained. Yet, it is not strange that series of equal completeness have not been found in all Paleozoic horizons.

The abbreviated or accelerated development of many of the higher Crustacea has resulted in pushing the typical freeswimming, larval nauplius so far forward in the ontogeny that this stage is either eliminated or passed through while the animal is still within the egg, so that when hatehed it is much advanced. Although the trilobites show distinct evidence of accelerated development through the earlier inheritance of certain chtaracters which will be taken up later, yet it is not believed that the normal series or periods of transformation were to any degree disturbed, since both the simplest and most primitive genera whose ontogeny is known and the most highly specialized forms agree in having a common early larval type. This would be expected from their great antiquity, their comparatively generalized and uniform structure, and from the fact that no sessile, attached, parasitic, land, or fresh-water species are known. These conditions by introducing new elements into the ontogeny would tend to modify or abbreviate it in various ways, especially among the higher genera.

Before discussing any of the various philosophical and theoretical problems involved in an attempt to correlate the larval forms of Crustacea, a brief consideration of the known facts relating to the larvie of trilobites will be presented.

Minute spherical or ovoid fossils associated with trilobites have been described as possible trilobite eggs, by Barrande ${ }^{3}$ and Walcott, ${ }^{33}$ but nothing is known, of course, of the embryonic stages of the animals themselves. The smallest and most primitive organisms which have been detected, and traced by means of series of specimens through successive changes into adult trilobites, are, as stated above, little discoid or ovate bodies not more than one millimeter in length, as shown on plates VIII and IX. It is fair to assume that we have here a general exhibition of trilobite larval stages, since the ten species represented are from various geological horizons, belonging to the Cambrian, Ordovician and Silurian sediments, with

Devonian types, and showing the simple as well as the highly specialized forms.

All the facts in the ontogeny of trilobites point to one type of larval structure. This is aren more noticeable than among recent. Crustacea, in which the namplius is considered as the characteristic larval form. It is desirable to give a name to this early larval type apparently so characteristic of all trilobites, and among different genera varying only in features of secondary importance. This stage may therefore be called

The principal characters of the protaspis are the following: Dorsal shield minute varying in observed species from . 4 to 1 mm . in length : circular or ovoid in form : axis distinct, more or less strongly ammatad: head portion predominating; glabella with tive amulations: abdominal portion usually less than one-third the whole length of the shield, axis with from one to several annulations; pleural portion smooth or grooved; eyes when present anterior, marginal or submarginal; freecheeks when present very narrow, marginal.

Several moults took place during this stage before the complete separation of the pygidium or the introduction of thoracie segments. When such moults are recognized, they may be considered as early, middle and late protaspis stages, and designated respectively as anaprotaspis, metaprotaspis and paraprotaspis. They introduced various changes, such as the stronger annulation of the axis, the beginning of the freecheeks, and the growth of the pygidial portion from the introduction of new appendages and segments as indicated by additional grooves on the axis and pleura. Similar ecdyses occur during the maplius stage of many living ('rustacea before a decided transformation is brought about. ('ertain of these later stages have received a distinctive name, and are called the metanauplius.

It is believed that the protaspis is homologous with the nauplius or metanauplius of the higher Crustacea. Most of the reasons for this belief will appear later in the present paper; some which may be stated now are as follows:
(1) The size of the protaspis does not differ greatly from that of many nauplii, and represents as large an animal as could be hatehed from the bodies considered as the eggs of trilobites.
(2) Some of the sediments carefully examined by the writer could preserve smaller larval trilobites were such originally present and provided with a chitinous test, as shown by the abundance of minute ostracodes, and the perfection of detail in these and other fossils.
(3) The protaspis can be shown to be structurally closely related to the nauplius, and in a more marked degree possesses some characters required in the theoretical crustacean ancestor.
III. Review of Larval Stages of Trilobites.

Matthew ${ }^{27}$, 28 has carefully described several early larval (protaspis) stages of trilobites from the Cambrian rocks of New Brunswick, which are very simple and primitive, and will be noticed first.

Solenopleura robbi Hartt; plate VIII, figure 1; from the Cambrian of New Brunswick; after Matthew. ${ }^{27}$ This larva is very minute and circular in outline; the glabella is obscurely annulated and extends to the anterior margin, where it is expanded; the neck ring is the only one well defined; the abdominal portion is less than one-third the whole length, and is limited by a slight transverse furrow; no traces of eyes or free-cheeks discernible.

Liostracus onangondianus Hartt; plate VIII, figure 2; from the Cambrian of New Brunswick; after Matthew. ${ }^{27}$. This form is similar to the preceding, though larger, and with the glabella more rapidly expanding in front. The neck segment is the only one which is distinct.

It should be mentioned that most of the larval specimens here described and figured are preserved in fine shales and slates, as casts of the interior of the dorsal shield, so that some features are not as emphatic as on the exterior of the test. When well preserved, the axis always shows the typical five annulations on the cephalon.

Ptychoparial linnarssoni Walcott; plate VIII, figures 3 and 4 ; from the ('ambrian of New Brunswick; after Matthew. ${ }^{28}$ The earliest stage is slightly more elongate than the preceding forms. The axis is narrow, expanding in front and obscurely annulated, five annulations belonging to the cephalon, and one to the pygidium, which is very short and separated from the cephalon by a distinct groove.

The second stage (figure 4) is decidedly more elongate; the axis is more distinctly annulated; the oceripital pleura defined; and the pygidium is larger and has an additional segment.

Pt!!chopuria kicu!i Meek; plate VIII, figures 5, 6 and 7; from the Cambrian of Nevada and Utah. Figure 5 represents a cast of the protaspis, and shows a defined occipital ring, with the axis slightly expanded and undefined in front; pygidium truncate behind. Figure 6, which is referred to a later stage (metaprotaspis) of the same species, shows the inception of several characters that have not as yet appeared in the previous larvie. The axis is very strongly annulated; the anterior lobe is nearly as long as the four posterior annulations of the cephaton, and on each side there is a furrow representing the eye-line of the adult; the free-cheeks are present as narrow marginal plates, including the genal spines; the pygidium shows two segments separated by a furrow.

An adult Ptychoparia hiayi is shown in figure 7 and may be taken as representing the sum of the changes passed through in the development of larva like the preceding, belonging to the genera solenoplemra, Lisstrucus and Ptychoparici. The introduction and growth of the segments of the thorax are perhaps the most marked changes, but other points of importance to be noted are: the comparatively smaller size of the cephalon and its transverse form; the limitation and recession of the glabella, which is now rounded in front, and only extends about two-thirds the length of the cephalon; the growth of the eyes and free-cheeks at the expense of the fixedcheeks; the increased segmentation of the abdomen, shown in the axial and pleural grooves on the pygidium.

S'co hirsuta Barrande ; plate VIII, figures $8,9,10$ and 11 ; from the Cambrian of Bohemia; after Barrande. ${ }^{3}$ The specimens of this species are preserved as casts, and several of the features are therefore somewhat sublued. The earliest or anaprotaspis stage, represented in figure 8 , is quite as primitive in most respects as any of the preceding. It is circular in outline, the annulations of the axis are distinctly shown only in the neek segment and pygidial portion, and the eye-line is present. In figure 9 of the metaprotaspis, quite an advance is seen in the development of the free-cheeks and the more pronounced annulation of the glabella, together with pleural grooves from
the nerk segment and those of the pygidium. The next stage (figure 10) probably represents the close of the protaspis stage (paraprotaspis) and the inception of the nepionic condition, when the cephalon and pygidium are distinct and before the development of the free thoracic segments.
In considering the changes necessarily passed through by these larve previous to attaining their adult characters (figure 11) the most notable, aside from increase in size and addition of the sixteen thoracic segments, are: the appearance and translation of the eyes p (ai; ${ }^{\prime \prime}$ uss:" with the growth of the freecheeks; the growth of the border in front of the glabella, which now narrows anteriorly, and terminates about one-third the length of the cephalon within the margin; the less distinct annulation of the glabella; and the development of the spines and tubercles ornamenting the test.

Triarthris berh; Green; plate VIII, figures 12, 13, and 14; from the Ordovician, Utica slate, near Rome, N. Y. A larval form of this species was figured by the writer ${ }^{5}$ in 1893. At this time, the eye-line was confused with the anterior annulation of the axis, making the cephalon appear to have six instead of five annulations. A recent examination of a large number of specimens shows that five is the invariable number, as here represented. Two protaspidian stages of this species have been noticed, differing chiefly in the size of the pygidium. Both agree in showing a strongly annulated axis, not expanded in front and terminating some distance within the margin. From the first annulation, a slightly elevated ridge on each side indicates the eye-line, and extends to the marginal eye-lobe. The adult form (figure 14) shows in addition to several characters noted in the previous species, the nearly complete lose of the two anterior annulations of the glabella; the disappearance of the eye-line: and the development of a row of nodes along the axis, from the neck segment to the proximal segment of the pygidium.

Acidespis thbercultata Comrad; plate IX, figures 1, \supseteq and 3 : from the Lower Helderberg group, Albany county, New York. ${ }^{4}$ Several of these remarkable larver have been found perfectly silicified in a limestone from which they have been freed by etching. In general form, they resemble the second larval stage of sino (plate VIII, figure 9). but the pygidium is shorter
and the glabella does not expand and terminate in the anterior margin. No eye-line is present, but the ere-lobes may be seen a little within the margin. The glabella has the characteristic number of amulations: margin provided with a row of denticles: genal angles extended into epines: pyridium with four spines.
The adult condition (figure 3) shows that the eyes have moved inwards and barkwards to near the neck segment. The glabella has lost its ammutations and is broken up into a median lobe with two smaller ones on each side, while the neek ring is projected into a spine. The changes noted here are much more profound than in any of the preceding genera, since Icidrespis is one of the most highly speceialized of trilobites in its glabellar structure and elaborate ormamentation. The protaspis, too, partakes of this sperialization, and, although the general form of the shield and the annulation of the axis are as primitive as in Trionthrus, yet the characteristic spinosity of the genus appears even at this early stage and is a marked instance of acceleration of development.

Aryes consan!minens ('larke: plate IX, figure 4 : from the Lower Helderberg group, Albany county, New York. A singrle larval form of this type has been found and at first was - provisionally referred to P'hë̈thonides. ${ }^{t}$ The recent publication by Clarke, ${ }^{1 t}$ of A !!es consunguinems from the same horizon, and a comparison of the larva with the description and with considerable additional material, renders it now possible to determine definitely the relations of this interesting form. As the main details of structure in Acidnspis ąnd A A!!es are so similar, the transformations undergone by the larva are much alike in each case. The young A iges likewise shows the same acceleration in the development of the spines and surface ornamentation, and the retention of the primitive features of the glabella. The specimen seen in figure t represents a late larval stage (paraprotaspis), as shown by the transverse form of the cephalon and the large size of the pygidium.

Proëtus pureinsrulns Hall; plate IX, figures 5, 6 and 7 ; Utica slate, near Rome, New York. Two larval stages of this species have been found. The younger (figure 5) is smooth, broadly ovate, 72 mm . long, and widest in front: axis distinctly annulated, cylindrical on the rephalon, tapering on the
pygidium; eyes nearly transverse to the axis, very large and prominent, situated on the anterior margin, separated only by the axis. The specimen represented in figure 6 is in the paraprotaspis stage, and measures .96 mm . in length. It showsan advance over the other in its size, its larger pygidium with grooved pleura, and the beginning of the recession of the eyes.

The adult of this small species is shown in outline enlarged two diameters, in figure 7. The principal changes from the larva which should be noticed are: the loss of the four anterior annulations of the glabella, the neek segment being the only one wholly defined, although the basal lobes represent remnants of the next anterior; the translation of the eyes backward as far as the pleura of the neck segment, and the change from a transverse to a parallel position with respect to the axis.

In the original description of this species, ${ }^{23}$ no mention was made of fine undulating strix ornamenting the entire dorsal surface of the test, nor of the basal lobes of the glabella. Both these features are present in the type specimen, which is from Cincinnati, Ohio, as well as in all the specimens from the Utica slate, near Rome, New York. With these additional characters, the species is very closely related to Proëtus decorus Barrande.

Drlmonites sociolis Barrande; plate IX, figures 8-11; from the Ordovician of Bohemia ; after Barrande. ${ }^{3}$ A nearly complete series of the growth stages of this species is given by Barrande. The earliest, or anaprotaspis, stage found (figure 8) exhibits an outline and axis similar to Acidrespis. The eyes are quite large and situated, as in the same stage of Prö̈tus, transverse to the axis, on the anterior border. Genal angles present, but in this case not produced by the free(heeks as in L'ow and Pty.hoproion; glabella strongly annulated, increasing in diameter anteriorly, although not expanding at the frontal margin as in sioc, etc. In the two following stages (figures 9, 10), the pygidium increases in size, and the pleura are defined. To reach maturity (figure 11), eleven segments are developed in the thorax, the glabella becomes more prominently developed in front, but the five annulations are maintained. The eyes have travelled in and back as far as the third head segment, and their longer axes have swong around
into a position parallel with the axial line, as in Proëtus. The pygidium has added many new segments, and the extremity is prolonged into a spine.

Before proceeding further in the discussion of the protaspis, it is necessary to notice a number of forms of young trilobites which have heretofore been referred to the embryonic and larval stages, but which are now believed to belong to stages later than the protaspis.

18

3

Figure 1. Agnostus nudus Beyr.; after Barrande.
Figure 2. Agnostus rex Barr.; after Barrande.
Figure 3. Trinucleus ornatus Sternb.; after Barrande.
Figure 4. Hydrocephctus suturnoides Barr.; after Barrande.
Figure 5. Hydrocephalus carens Barr.; after Barrande.
Figure 6. Olenellus (Mesonucis) (saphoides Emmons; Ford collection; original. $x 30$.
Figure 7. Olenellus (Mesonacis) asaphoides Emmons: after Ford.
Figure 8. Olenellus (Mesonacis) asaphoides Emmons; after Walcott.
Besides the truly elementary forms deseribed by Barrande and already noticed (Sun hirsutu and Dulmonites socialis), there are others which he referred to his second, third and fourth orders of development. ${ }^{3}$ Among these 1 !!nostus may be taken tirst. The youngest forms of A g!ositus mulus and A. re.e (figures 1,2) measure respectively 2 and 1.3 mm . in length, and the adults 13 and 15 mm . The earliest stages of the genera shown on plates VIII and IX measure less than 1 mm ., while the adults are more than 25 mm ., with the exception of P'ö̈fus proriusculus, which is seldom more than 10 mm . long, though this species has a protaspis .72 mm . in length. The cephalon and pygidium of the youngest known I! ! 1 ostus are quite separate and distinct, which is not the case with the typical protaspis stage. It therefore seems probable that on acoount of the comparatively large size and advanced struc-
ture of the youngest stages observed, the elementary forms of this genus are as yet unknown, and possibly the extreme tenuity of the test in the protaspis has prevented their preservation. In the same way the young of Trimuchens (figure 3) show a separate cephaton and pygidium, and the specimens are in a much more adranced stage of development than the protaspis of Proïths, shown on plate IX, figure $\overline{0}$. An evidence of age is furnished, also, in the transverse shape of the head, which, in typical elementary forms, is longer than wide, instead of wider than long.

The youngest specimens of Arethusinn hominchi, figured by Barrande, ${ }^{3}$ are - mm. or upwards in length and have seven or more free thoracie segments, with the rephalon wider than long. The facts of ontogeny show that younger stages must be admitted in which the number of segments diminishes to nothing, continuing down to a form agreeing with the protaspis of other genera.

It has already been suggested that the species deseribed by Barrandes under the generic name of I ydrocephollis are probably the young of Pardolorilles. This conclusion receives further support from the undoubted young of Olemellns, a related genus, which in its immature stages bears a strong resemblance to H_{y} dirocepholus. The youngest examples of the latter have a distinct pygidium, a well-developed cephalon, and large eye-lobes at the sides of the glabella, as in adult forms. Free-cheeks were evidently present though not generally preserved. See figures 4 and 5 .

The young of Olemellus "sinphoides, described and illustrated by Ford ${ }^{22}$ and Walcott, 33,36 also present ${ }^{4}$ a number of features considerably in advance of a typical protaspis. The immature characters are mainly the large size of the cephaton and the distinct annulation of the axis. The post-protaspidian characters are the distinct and separate pygidium, the adult position of the eyes, and the apparently well-developed freecheeks. In figure $\overline{7}$, after Ford, $2=$ the outer pair of spines belongs to the free-cheeks, the other pair being formed by the pleural extensions of the glabella, which were called the interocular spines. See also figures 6 and 8.

The young specimen of P tychoprisia monile Salter sp., figured and noticed by Callaway, ${ }^{13}$ is 1.5 mm . in length, and
agrees, at far as can be determined without seeing the original, with what is known of other speries of the same genus. It probably belongs to a stage later than the protaspis.

Matthew ${ }^{26}$ has carefully described some small cephala of
 ella) brile!!i, from the ('ambrian of New Brunswick. The fact of their being separate cephala, transverse in form, and from 2 to 3 mm . in length, is sutlicient to show that they do not represent the youngest stages of these species.

The immature examples of A gmostms, Trimur/ms, Arethusimu, Parulorides, Olemellis, C'tenocephalus and C'omocoryphe, here briefly noticed are of great interest in a study of the ontogeny of the various species to which they pertain. In the present paper, however, it is intended chiefly to establish the primary larval characters of the trilobites, and therefore only the earliest stages are considered. Under the genera just mentioned, the writer has endeavored to show that as yet their ontogeny cannot be traced as far back as the stage which has been defined as the protrespis. Therefore, any general notions of first larval forms must at present be based on the genera Solemoplew'a, Liostracus, P'ychoparia, S'eo, Triarthrus, A cidaspis, Prö̈̈tas and Dalmaniteş.
IV. Analysis of Variations in Trifobite Larva.

After taking a general survey of the earliest known larval stages of trilobites figured on plates VIII, IX, it is evident that an accurate and detailed description of any one would not apply to any other except in certain broad characters. To formulate a definition of the protaspis applicable to all, as has been done previously ($p .169$), it is necessary to neglect or eliminate some rather striking characters which should now be mentioned. A few features thus omitted are considered as very primitive larval characters, while others are modifications introduced in higher or later genera through the operation of the law of earlier inheritance.

From the best evidence now obtainable, the eyes have migrated from the ventral side, first forward to the margin and then backward over the cephalon to their adult position, thus agreeing with Bernard's conclusions. ${ }^{12}$ Therefore, the most primitive larve should present no evidence of eyes on the dorsal shield, and naturally there would be no free-
cheeks visible. Just such ronditions are satisfied in the youngest larva of P'tychoprorio, solemopleur" and Lidstrocm, which are the most primitive genera whose protaspis is known. The eye-line is present in the later larval and adolescent stages of these genera, and persists to the adult condition. In sao it has been pushed forward to the earliest protaspis, and is also found in the two known larval stages of Trourthrus. Suo retains the eye-line throughout life, but in Triarthrus the adult has no traces of it, and none of the higher and later genera studied has an eye-line at any stage of development. Matthew has considered this feature as especially characteristic of most of the Cambrian genera, and now it is further shown to be a character first appearing in the later larval stages of
 (Suo), then disappearing from adult stages (Triarthrms), and finally pushed out of the ontogeny altogether (Aciduspis, Dalmanites, etc.). The eyes are visible on the margin of the dorsal shield after the paraprotaspis stage, later than the eye-line in Ptychoparia, Solemoplemro, Liostrocus, Soo and Triarthrus: but in the other genera through acceleration they are present in all the protaspis stages, and persist to the mature, or ephebic, condition, moving in from the margin to near the sides of tne glabella.

The changes in the glabella are equally important and interesting. Throughout the larval stages, the axis of the cephalon is five-segmented or annulated, indicating the presence of as many paired appendages on the ventral side. In its simplest and most primitive state, it expands in front, joining and forming the anterior margin of the head (larval Ptychoparia, Sao). During later growth it becomes rounded in front and terminates within the margin. In higher genera through acceleration it is rounded and well-defined in front even in the earliest larval stages and often ends within the margin (larval Triarthrus, Acidaspis). From these common types of simple, pentamerous glabellæ, all the diverse forms among adult individuals of various genera have been derived, through changes affecting any or all of the lobes. The modifications usually take place in the anterior lobes first, and gradually involve the others, though rarely disturbing the neck segment which is the most persistent of all. Six lobes are occasion-
ally found in the glabellae of some species. They do not indicate an additional pair of limbs, for the extra lobe is produced (1) by division of the anterior lobe through the greater or less extent of the eye-line across the axis, as in olenellus, Paitidorides and O!!!!!i": or (b) by the marked development of muscular fulcra, which are supposed to be connected with the hypostoma.

The next structures not especially noticeable in all stages of the protaspis are the free-cheeks, which usually manifest themselves in the meta- or paraprotaspis stages, though sometimes even later. Since they bear the visual areas of the eyes, their appearance on the dorsal shield is practically simultaneous with these organs: and before the eyes have travelled over the margin, the free-cheeks must be wholly ventral in position. They are very narrow when first discernable (plate VIII, figures 6, 9 and 10), and in Pytchopario, Soo, etc., include the genal angles, but in Dalmarites they extend only a short distance below the eyes.

The remaining features of the protaspis which here require notice are the pleural furrows and the pygidium. The pleura from the anterior segments of the glabella are occasionally shown, as in the young of Olenellus (figure 6), but usually the pleura of the neck segment are the first and only ones to be distinguished on the cephalon, the others being so intimately coalesced as to lose all traces of their individuality. This makes the cranidium, or head shield, exclusive of the freecheeks, consist of the fused lateral extensions or pleura of the head segments, as already noticed by Bernard. ${ }^{12}$ The possible pleural or segmental nature of the free-cheeks will be noticed later.

The distinct pleura of the pygidium appear soon after the anaprotaspis stage, and in some genera (Steo, Dalmanites) are even more marked than in the adult state, much resembling separate segments. The growth of the pygidium is very considerable through the protaspis stages. At firstit is less than one-third the length of the dorsal shield, but by the successive addition of segments, it soon becomes nearly one-half as long. In some genera it is completed before the appearance of the free thoracic segments, though usually new segments are added during the adolescence of the animal.

A number of genera present adult characters, which agree closely with some of the larval features notieed in this section, and are important in a phylogenetic study of the trilobites. The main features of the cephalon in the simple protaspis forms of Solemonlenion. Lidstomens and Ptychopulia, are retained to maturity in such genera as C'uronsion and Acouthemen, which have the grabella expanded in front, joining and forming the anterior margin. They are also without eyes or eyeline. Cemorephollus retains the arehaic glabella nearly to maturity, and likewise shows eye-lines and the begimings of the
 still further adranced in having the glabella rounded in front, and terminated within the margin (larva of Tridrthrus). These facts and others of a similar nature show that there are characters appearing in the adults of later and higher genera, which successively make their appearance in the protaspis stage, sometimes to the exclusion or modification of structures present in the most primitive larsa. Thus the larve of $D(1$ "m"nites or Prö̈tns, with their prominent eyes, and glabella distinctly terminated and rounded in front, have characters which do not appear in the larval stages of ancient genera, but which may appear in their adult stages. Evidently such modifications have been acquired by the action of the law of earlier inheritance, or tachygenesis. Altogether it seems that we have represented on plates VIII and IX a progressive series of first larval stages in exact correlation with adult forms, the latter also constituting a progressive series, structurally and geologically.

A summary of the features added to the dorsal shield of the anaprotaspis stage of acceleration during the evolution of the (•lass, from the simpler forms of Cambrian times to the later and more highly differentiated Drelmomites, Prötus and Aciduspis, would include: the free-cheeks; the eyes; the more strongly lobed glabella, rounded in front; the transient eyeline; the genal angles; and the ornaments of the test.

These additions, as may be seen by reference to plates VIII and IX, considerably complicate and modify the primitive protaspis, but, as previously mentioned, it does not lose any of its essential structures. Besides, it is possible to trace the origin and significance of the acquired characters, and thus to assign to each its true value.
V. Antiploty me the Traborte.
 Ggized, and is tow well known to repuire mone than a passing notiee. Even in the marliest (ambrian, they bear widence of great antiguity in their diversited form, their larval modifirations, and their polymerons head and ramdal shield, all of which features shew that tribobite phydegeny mast reath far back into pre-c ambrian times.

Not only are the smallest epere fer found in the rambrian
 is a great range of variation in the number of free thomarir
 ides. The prgidium likewise shows extreme variation of from two to upwardenf ten ankylosed segments. The eyes may be absent as in $1!$! mos/ns and Mirrorliserns, or very large as in Pormdorerdes, though both in this respect and in the number of somites, free or fused, the ('ambrian genera are exereded in later deprists. In mmamentation and spiniform processes, the C'ambrian speries show considerable development though not as great as others since that time. However, the wide variations they do present in this partioular indieates differentiation and sperialization considerably removed from the heginning of the trilobite phylum.

The acquisition of distinct larval stages could only have been reached through a long series of ehanges in ancestral forms. The composition of the erphalon and caudal shield indicates a derivation from some primitive form, probably annelidan, in which, through adaptation to special requirements, certain polar segments berame fused, forming very distinct terminal body regions. Furthermore, the tribolites are the only large division of the Arthropoda which has become extinct. The Merostomata and Phyllocarida, rulminated a little later, though still represented by living species, but all the other divisions apparently have continued to increase since their inception during Paleozoic time. The only known arthropod contemporaries of the trilobites in the Cambrian are the Merostomata, Ostracoda, Phyllopoda, and Phyllocarida, all of the higher forms apparently having developed since that time. A more graphic view of the geological range and distribution of the arthropods is represented in the following table:

Having thes far reviewed the features of the primitive protappis and some of the characters it acopired through earlier inheritane e together with the eomparative age of the different groups of arthropods, it must be conceded, that, in interpreting crustacean phylogeny from the facts of ontogeny, the trilobites. so far as they show structure, are entitled to first place. Moreovere sinee the appendages are quite fully known and from them the trilobite proves to be a most gemeralized and primitive crustaceam, still greater reliance cati be placed of deductions hased upon a study of this type. The recent diseoveries of the antenna and the exact details of trilobite structure, together with the larval homiongies here made and the eoneordance of trilobites with the theoretieal original erustacean leare almost mo doubt as to their true crustacean attinities. Woodward 37 from another point of view, reaches the same opinion by saying: "The trilobita, being certainly amongst the carliest forms of crustacea with which we are ace quainted, cannot be removed from that dass without destroying its ancestral record."
VI. Restoration of the Protaspis.

At first thought, the attempt to reconstruct the ventral side of the trilobite protaspis may seem a little hazardous or premature, but a careful consideration of all the data leads the writer to undertake this with some contidence.

The wellle Triarthins is taken for the hasis of this restorat tion. as it is to-lity the hest known of all the trilohites, and its ventral strubture has been asoertained to a degree of perfereton of detail which compare latombly with many of the reent ©rustareans.i. in as The writer has studied the strueture of many adult and immature peerimens some of the mot more than or min. in lengeth. so that formately the appendage ate kown at many stage of growth. Experially are the young and rudimentary limbe near the extremity of the peridinm in adoleseent individnals of ronsiderable monphongical inter-

 pler"sin. or in a gemeral way. with the still more rudimentary trunk limbe in the namplins stages of these and other forms.

It has been definitely aseertained that the erphaton in tribebites bears fire pairs of jointed apendages or limbs. In larval or immature seecimens, and in adults in which the glabella retains it- primitise structure, this momber is indicated on the dorsal shield by the fise lobes or ammations of the glabella. including the neek ring. These may therefore be taken as representing. in so far, the original sementation of the head. and agree with what is generally acoepted as the primitive strueture in modern true (rustacea. The head pertion of the protaspis clearly shows this pentasomitio strueture, and eridently carried a correponding number of paired limbs on the rentral side. It has also been demomstrated that the annulations on the axis of the pegidiam correspond to the number of paired limbs bencath, exclusive of course, of the anal segment. Here, too, it is posible to tell from the pegidial pertion of the protaspis the number of limbere perent during life. The protaspis of Tr, outhres, represented in plate VIII, figure 13. on this basis had tive pairs of limbs attached to the head pertion and two pairs to the prgidium.

Next. as to the composition and form of these elementary protaspis limbs, it is safe to assume that the anterior pair, corresponding to the antemmbes, must be uniramous since they are so during all the roung and adult stages observed, and since this form is common to all namplius stages of modern (rustacea, and is reeognized as primitive and elementary for the elass. There is apparently a greater similarity in the
larval antemmales than between any other appendages, and as Ap,"s and E"npllensia have these in a very generalized form. they are taken as type of the first pair of limbe of the trilobite protaspis, as show in plate X. figure I (I). It should be noted, tow, that the antemnules of the trilohites arise from the sides of the upper lip or hypostoma, as in the namplits.

The other head appendages are tepically branched, thengh in many of the reerent (rustacea the lose this character after the larval stages. Espereally is this true of the third pair of limbs, which beoome moditied into the mandibles. In trilobites the primition biramous structure of the head limbe persists to adult stages, oreourring also in limbsof all the pesterion segments where the berome more and more phyllopodiform. In the restoration of the protaspis it seems only neecesary to append this arehaic type of limb to each segment, agrecing as it does in form and structure with the rudimentary limbs of older stages and with the manplins and metamanpline stages of $A p \ldots s$.

It camot be doubted that the protaspis had five pairs of limbs on the head portion and one or more on the previdim. and although these are the main pointe necessary to prowe the argument in the next seetion, on the manplius, get it serms perfectly warrantable and better for graphic purposes to attach the required number of elementary limbs to the rentral side of the protaspis, as represented in plate X, figure 1 .

There are other organs and structural details oceurring in the nauplius and in adult trilobites. which deserve recognition in a restoration of the protaspis stage. First among these is the labrum, or upper lip. Nowhere is this plate so well develnged and so striking a ventral feature as among the trilohites. There can be no hesitation, therefore in aceepting this as characteristio of the protaspis.

The trilobites and most reeont erustareans hase a metastoma, or lower lip. This is already developed in the nauplius
 ably represent- an carly larval character. It usually apparat a median plate divided into two small plates, or lappets. on each side of the median line posterior to the mouth, and is thus represented in the restored protaspis. As it areurs on a segment bearing also a pair of legs and hat no separate menromere. it camont well be considered as representing a somita.

An amal "pening is fomme in most namplii. .eporeially in
 this tage is momal and freeswimming. The protaspos. as reperenting a fres-swimming larmal stage of trilohites. therefore probahly pescessed an anal opening.

The only ehararererememted in the rexamation which is acoepted purely from amalogy is the median mpaired eye. This organ is almos minersally present in the namplas, and is rexarded as a mery primition chatarer wherem fombl.

The next and last -theture th be motioed are the freecheeks and the begimings of the paired epess as show in
 indidated in the deseriptions and observations of the protaspis and its derived whaterers, and need not be remeated here. Ap)parently the natuplins presents mothing homologous, unless
 ete.. may be taken ats sulh. The paired eyes and frontal sensory organs are elose together and serem to hatre some intimate connertion, for, ats the pated eges develop, the latter dwindle and disappeare. Likewise in the trilohites the free-e heeks bear the visual areas and may be almost wholly comberted into

The greater or less separation of the cerehral ganglia in the "hartopeds and in some of the lower (ernstamea leads to the idea that the freereheres in trilohites are the plemea of an oeculiferous head segment, which otherwise is lost. If the hypostoma is homologous with the ammelid postominm, as urged by Bernardly. then the freereheeke may be considered as representing the seeond proeephalie segment, which is the mumber reguired on the supposition that cad nememere correspends to a somite. There is a separate neuromere to each mesodermie metamere posterion to the head, and from analogy We should expert that each memromere in the head would represent an original sement, weecially as it can be demonstrated that the head is eomposed of comsolidated or fused segments (Kingsle y^{24}).

Having thus shown the probable ventral structure of the peotapis. We are prepared to make some gemeral observations on the larval type if mokern (rustacea known as the Fin"plins. Before doing this it is well tormphase again that there is

Very positive evidence, amounting virtually to errtainty, that the protaspis had five pairs of limbs attached to the rephatir portion, hehind whirh was an abdominal portion containing the formative elements out of whirh all the posterior somites and appendages were developed.
VII. The ('rostarean Natrotrs.
 nateaminuterernstarean believed torepresent an adultanimal. Afterwards it was found to be a larval stace of ferforss. but berause it agreed instrueture with the larvae of many other (rustaceathe name was retained for that type of larval form and is now in general nse. Primarily it is supposed torepres sent the first leerewimming stage after the eseape of the animal from the exer. Howerer, many speries arequite fully develOped when leaving the egeg, and underen eomparatively sheht subsequent metanorphoses, and in these and other sperits there may be developed in the eger an embryo havinge some of the eharacters of the namplius. Therefore the term is also applied to all cases where a rertain ascemblage of natuplan
 it may be eonsidered as a stage of develonement mot pestriceded to a definite period of ontogens.
 its development passes through surh simple metamorphoses. that it has been aptly ronsidered hy Bernard" as a namplins Erown to maturitr. Balfour alsustates that therehicf point of interest in the development of 1 fers -is the fare of the primitive Namplins form beeominge gradually eonvorted withont any -pereial metamorphoses into the adult rondition."* This form, tosether with the namplii of other ernstarealls and the sturly of the larval and adnlt eharacters of the trilohites. woht to afford definite knowledgenf the ehatartersposesed by the athrestral forms af the ('rusatroal.

 and phÿngenv. are believed toreresent the primitive adult

[^0] pair of appendages has been cormetated as maxillipedes. though from their innervation they serm to be metastomic and homolowens with the rhilaria of Lim"nl"s.
 distame from the prototype althomg in itarlf a most primi-

 all was all elomgated animal. "omsisting of mumerolls amd wherably homonomons segments. The heal segment was fared with the 4 subsergent trunk segments to form a cophalie re gion, and carried a median frontal 'rea pair of simple ante-
 of himanose oral limbs. which already sored to some extent for taking food. From the posterion exphatir region proweeded an interumental fold which. as dorsal shichl. eosered al larger or smaller pertion of the trumk. The trmek segments were each provided with ome pair of biramose limber Bexides the mediall ere there were ofrontal sensory orgats. The nerous system consisted of brain, orophagat womisumes and kegmental ventral chord. with a doublog gangion for cald segment and pair of limbs. The heart was a long contratile dowsal vessel with mumeron- pairs of astian segmentally arranged. In the racial form the sexes were separate, the male with a pair of testers, the female with a pair of owares. both with paired ductsemergingexternally at the haseof a pair of trunk limbs. The exeretory function was carried on be at least \cong pairs of glands, the anterior pair (antemal glands) emerging at the base of the seeond pair of antemax, the pesterion (shell glands) at the base of the seoond pair of maxillar. The midegut possiby had segmentally arranged divertioula (hematio incaginations.."

The characture ascribed to the typical natiplins have been selected mainly on the principle of gemeral arerage. They do not satisfy the theoretieal demands resulting from a comparative morphological study nor are the consistent with the are cepted requiremente of an ancestral type of the 'rustacoas. Claustr urges that the namplins is a modified or serondary larval form, and the writer now hopes to farther substantiate this view, and partly to reconstruet the hamplins from internal evi dence and from its more primitise representation the protas pis of the trilohites.

The usual fetaures attributed to the namplins are: three paiso of appendages, afterward forming two pairs of antemne
and the mandibles: the first pair is miramous and sensony in function; the second and third pairs are hiramons, swimming appendages: body ushally unsegmented: anteriorly there is a single median eye, and a large labrum. or wper lip: an alimentray •anal bent anteriorly, andending in an amus near the posteriore end of the body: a dorsal shield: the second pair of anternar are innervated from a sub-osophageal ganglion. Frontal sense organs and a rudimentary motastoma are sometimes present. The trunk and ablominal regions are not gent crally differentiated.

Balfour remarks of the manplims that: "In most instances it does not erofrtly eonform to the above trole and the divergences are moredonsiderable in the Phyllopeds than in most other groups." 'This variation is inded quite marked among nearly all the oroups hesides the phyllopods and furnishes the facts for the eomelnsion, that the hexaperolose eondition is not primitive.
()n plate X are represented sombe of the leading types of nauplius structure taken ehiotly from the exeollent eompilation by Faxom.:' Baring in mind the typical and average charareters of this larva, some of the variations will be briefly reviewed.

The namplins wif . fors. represented in plate X, figure 2. shows the radiment - of fire trunk segments which in a later stage (figure 3) (exolop phyllopodiform appendages belonging. t" sixth. seventh, and eighth pairs of limbs. They are the anterior trunk apperndages and appear at atime when the fourth rephalie pair is a mere rudiment while the fifth is entirely undeveloped. The fourth and tifth pairs of head appendanesevidently must have some existence. thomeh madereloped in the
 not reftime them, and they therefore remain for atimequies

 prosersively shortened. motil. in the last. they almost disap-
 rudimentary trunk rexments and appendages (!). Figuros ! and
 mentary the nathplins aphendages may beoome whenthis stage
is pased within the exg. Even al menemarked redurtion is ex-

 ond nanplas stage (figure 1-) a a fourth pair of limbsis derel"ped.

Examphe hate beroll dited showing the reduetion and ohsoleserene of the anterion antemare or firs pair of natuplas limbs. and some rase will now he eited in which the third pair also

 mer is of additimal interost as showing that the appendages from the fourth to the dighth, may bedeveloped, while the third remains quiescent, and that the seeond pair. typically biramoms.
 and expecially in 6 ?!fore (tigure is). the namplius limbs are simple. The embroo of Lucifer (tigure et) and a late namplius
 the begimings of the metastoma (1 t') with the two maxillat and first maxillipeder.

It appears from the foregoing facts, that dough has been shown to prese the marked variations in the momber and state of development of the namplins appendages, and to reath the eomelnsion, that potentially tive pairs of cophalie appendages are present. The two posterior paimare the onesusually not developed until after some of the tronk limbe appear. Very satisfactory explanations have been offered as to why the tirst three pairs have been seleeted by the larva, although it does not seem to have been reeognized that the fourth and fifth have ben more or less suppresed during the exolution of the alass.
 ing that: "In a foung larva which. like the Vouplius. is hatehed batly from the reg. only a few of the organs most neeresary for independent lifeand independent acopisition of food ram be developed. The 3 most anterior pairs of limber, which serve for swimming may be deseribed as such most necessary organs. The thifd pair perhaps belonge to this category, becallse as mouth parts, generally provided with masticatory proresses, they serve mot only witn the others for lowemotion, but abse for condureting food th the oral aperture."

Another peint in favor of the original pentamerons composi-
tion of the cephalia pertion of the namplas or protomanplins is the dorsal shield which is present in mathe forms. and is considared (ride Bernard") as a dorsal fold of the tifth segment. So that in reviewing the namplins structures. we find here and there evidenere of the entire series of head sements.

Now. sine the protaspis fultils the ryuirements her having tive well-deweloped rephalie segments. and is berides the oddest.
 represents the primition ancestral lamal form for the class.

The nallplits. therefore is to be consideped as a derived latra modified by adaptation.

Other variations in the chamactersof the manplins orecorr, but as they have elarly originated (1) from the parasitie hathits of the adult. (l) from cmberonie conditions, or ((.) from arlier inheritance. they need not enter into consideration here. Surh.
 (b) the absence of the median eye in I Inpllnia and M (oine, and (c) the hivalue shell in C!!feris. The larval stages of other, and equecially later and higher groups of arthropeds, offer more considerable differences and need mot enter into this disenssion, which is aimed ehiefly to establish the gencetie relationship, between the protaspis of trilobites and the namplins of rerent (rustacra.

Vlll. Símмary.

Barrande first demonstrated the metamorphoses of trilobites in 1st9, and recognized foolr orders of development, which are now shown to be stage of growth of a single larval form.

A common barly lamal form is reeognized and called the porotas.pis.

The protaspis has a dorsal shicld, a cephalie portion romposed of tive fused eegments and a pegidial portion eonsist ing of the anal segment with one or more fused segments.
The simplest protaspis stage is found in the ('ambrian genara of trilobites. During later geological time it acquired additional characters be carlier inheritance and berame moditied, though retaining its pentamerous glabella and small abdominal portion.

Some of these actuired eharacters of the dorsal shieid are the free ehecks, the eres, the eye-line the genal angles and the ornaments of the test. The fiee-rheres and eyes moved to the dorsum from the ventrum.

The history of the acequired eharacters is traced by meanof eomparisons betweon larval and adult tribobites. through paleozene time and a progresive series of larval forms retablished in exart romelation with adult forms. which themselves comstitute a progressive sories. chomologically and structurally.

The antiquity of trilobites is indicated be their remains in the odest Paleognide rocks, and wieceially by the fact that in the early ('ambrian they are already much spectalized and differentiated in number of genera. The age of the tribobite or crustacean phytum is further shown from the distinet larval stages of trilobites and their having a head and prexidimm of ronsolidated segments.

Since the tribobites are among the oldest and most gemeralized of Crustacea, their ontogeny is of comsiderable importance in interpreting erostacean phylogeny.

The protaspis in its segmentation shows that the cophaton had five pairs of appendages as in the adult.

The crustacean hanplins is shown to be homologous with the protaspis and to have potentially five cephalie segments bearing appendages, which should therefore be taken as chararteristic of a protomantius.

The namplins is a modified erustacean larva. The protaspis more nearly represents the primition ancestral larval form for the class, and approximates the protonamplius.

IX. Referbences.

1. Balfour, F. M.. 188.7. A Treatise on Comparative Embryology. Me. morial edition.
$\xrightarrow{2}$. Barrande, J., 1849. S'un hirsuta Barrande, ein Brachstück aus dem "Systèm silurien du centre de la Buhême." Neues.Jahrb).fïr Min., Geol., ete.
2. - 1852. Système silurien du centre de la Bohême. 1r partir.
1. Beecher, C. E.. 1893. Larval forms of Trilobites from the Lower Helderberg (iroup. Am. Jour. Sci., III, vol. xumi.
万. -- 1893. A Larval Form of Triarthrus. Am. Jour. Sci., III, vol. xlvi.
(i. - 1893. On the Thoracic Legs of Triarthrus. Am. Jour. Sci., III, vol. xivi.
2. - 1894. On the Monde of Oceurrence, and the Structure and De velopment of Triarthrus Becki. Am. (ieolocist, vol, sili.
1. ---1894. The Appendages of the Pygidium of Triarthrus. Am. Jour. Sci.. vol. xlvil.
2. - 1892. Further Ohservations on the Ventral Structure of Tri arthrus. Am. (ieolocist, wol. xu.
 sio.. III. rol. xis.
 Nature Series.
1. 1s!4. Thessematir Positionof the Tribohites. Quar. Jour. (iool. Suc.. Lami.. vol. $1 .$.
 South Shropshire, with atheseription of a new famar. Quar. Jour. (ieol. Sox. Lami.. vol. sxxal.
2. ('larke. J. M.. 18: ${ }^{\text {a }}$. The Lower Silurian Tribhites of Minnesota.

 gisehen (irmallage des ('rustareen-Systems.
 \%. Inst. Wien, vo.
3. (\quad orla. A. J. ('. |and I. Hawlel. 18t7. Proxdom einer Monographit der bömisehen Tribohiten. Ahhandl. böhm. (iesell. Wiss.. Prag. vol. r.
4. Wohrn. Anton, 1sio. Untersuchungen über Batumal Entwickelung der Arthroperem. Zeit. f. Wiss. Zoöl., Bad. sxi.
5. 18.(). (ieschichte des Krehs-Stammes nach embryologischen, anatomischen und palaontohgisehen Quellen. Jenaisehe Zeitseh.. wol. \because
 ugraphs. Mem. Mus. ('omp. Zoöl, vol, ix, No. 1.
6. Fornali. H. T.. 18:O. The Relationships of Arthropods. Studies from the Biologiad Latmatory. Johns Hopkins Univ.. wol. No. 7.
 Jour. S.•.. IIT. vol. xul.
7. Hall. James. $18: \%$. New Sperits of Fossils from the Hudson-River (iroup of Ohioand wher Western States. Appendix. 13th Ann. Rept. N. Y. State ('alinet.
-t. Kingsley. J. S.. 18:4. The Classificatiom of the Arthropoda. Am. Nat.. vol. sxvil.
2.). Lang. Amold. 1891. Text Bowk of ('omparative Anatomy. English translation hy H. M. and M. Bermard.
ㅇ․ Matthew. (i. F... LAst. Illustrations of the Fatuma of the St. John (iroup contimued: on the (onororyphea, with further remarks on Paratoxides. Trans. Rox. Soc. (amada, vol. n. section w.
$\because 7 . \quad$ 1887. Illustrations of the Fatuna of the St. John (iroup. No. IV. Part II. Thr Smaller Trilohites with Eyes IPtychoparidat and Ellipsorephalidae. Trans. Rog. Sor. (Ganala, wol. v. section IV.
©8. - - 1889. Sur le Développement des Premiers Trilobites. An mats Soe. Rey. Mal. de Belgrique.
 aquis I andare et Norregia reperit. etc.
8. Mäller. Fritz. 1sily. Für Jarwin.
 lopod (rustareal. Twelfth An. Rept. L. S. (ienl. and (ieng. Sur. res.
: B2. Salter. J. W., Latis. A Momeraph of British Prilohites. Part III. Palamit. Sur. Lamion. vol. sion.
 lished in aldance of :31st Ropt. N. Y. State Mus. Nat. Hist.
9. 18T!. Fossils of the Ctia Slate and Motamorphosess of Tri arthrus Bereki. Printed in alvane of Trans. Ithany Inst.. whl x. 1skif. Secomel ('ontribution th the Sturlies on the ('imbrian Fammas of North Ameria: Bull. E. S. (ieol. Surr.. No. :3").
3t. 18:N. The Famma of the Lawer ('ambrian or Olenellus Zame.

10. Wendwarl. Henry. 18! S. Some Points in the Life history of the (rostacea in Early Palabooic Times. Ammiversary Ahderss of the President. (Ruar. Jour. (iteol. Soc. Lami.. vol. .t.

 PATE VHI.

Facere 1. Sulemplemberobi Hartt : after Matthew. Anaprotaspis stage: showing ohsourely ammbated axis. x:3). St. John group, (ambrian. New Brunswick.
 protaspis stage : the neck lobe is the only one distinctly marked. sere. Cambrian, New Brunswick.
 protaspis stage : axis slender, slightly annulated: pygidium defined by transverse furrow. x30. ('ambrian. New Brunswick.

Figere 4. Pe!flooperia limmerssomi Waleott: after Matthew. Pro taspis representing a later moult than the preceding, and showing stronger annulations on the axis, with an additional one on the pyeqidi um. x20). (ambrian, New Brunswick.
 showing obscorely defined characters, partly due to the fact that the specimen is a cast. xto. ('ambrian, Nevala.

Filitre 6. I't!g-hopurial kingi Meek. I later stage (metaprotaspis, : showing the strongly annulated axis, the eye-line, the free-cheeks in cluding the genal angles. and two segments on the pgotimm. x4. . (ambrian. Nevada.

Fificre 7. P'tychopuria kingi Meek: after Walcott. An adult spec imen. This and the other figures of adult individuals are represented in outline, with the free-cheeks shaded. to bring out more strongly the ehanges in the structure of the cephalon. $x^{1}: 2$. Cambrian, Utah.

Figure 8. Suo hirsutu. Barrande: after Barrande. Inaprotaspis stage : showing obscurely the limits of the pygidium, the eye-line, and the nearly cylindrical glabellar axis, expanding on the frontal margin. This and the two following specimens are preserved as casts. .x30. Cambrian, Bohemia.
 probahly near the end of the metaprotaspis stage: shewing the amme lated axis repambed in front: froer eherks narow amd marginal: peridi um of four segments. with plema distimetly marked and growed. x: 30 . ('ambrian. Bohrmia.
 vamod stater at or after the elose of the parapotaspis. in whioh the

 x ${ }^{1}$. ('ambrian. Bohnomia.

Flatre 1•. Triathrols brafi (ireen. Anapmotaspis: showing the ammatad axis. frominating hefore reathing the anterior margin: the Ue lines extending from the first serment to the marginal ere lobes : Pexdimm defined hy astight grower and including two sogments of the axis. x4\%. Orduvidian. U'tiaa Slate. noar Rome, New York.

Fuare 13. Thiarthows berei (ireon. Protaspis at al later moult: showing slight increase in size and the addition of a segment to the

Flotre: 14. Tidurflurns berki (ireen. In adult inclividual of this speries. x^{12}. Utica Slate. Now Sork.

PI.ATE: IN.
 Wenticulate margin and spines on cephaton: axis strongly annulated:

 stored from framents and an entire enrolled specimen. Natural size. Lower Heddertherg. Illathy ('o.. New York.
 or after the close of the parapootaspis stage: showing the form and or namentation. x? 0 . Lawer Helderherg. Alhany Co., New York.
 strongly ammated axis. with grove at each side: large prominent an terion eyes: pyidial plema indicated by faint grooves. x45. Ordorician. Ctioa slate, near Rome. New York.
 of the paraprotaspis stage: showing the larger pygidium which. how wer. is still incomplete. and the slight backward movement of the eyes. The right side of the sperimen is restored. xtr). Ordovician. Utica Slate, near Rome. New York.
 Ordovician, Utica Slate, near Rome. New York.

Fuitre 8. Irelmomites sociolis Barrande: after Barrande. Anapro taspis stage : showing the large strongly anmulated axis: the prominent anterior marginal eves: murronate genal angles: pexidium of three sey ments. x:30.

Fateke !. lorlmanites socialis Baramale: after Barmande. Meta protaspis stage: showing the stronger definition of the plewa of the

 sperimen probably represente the elose of the paraprotaspis stage, and shows four serments in the pergidimm and the first evilenee of the backward movement of the eges. which mow indent the marein. x:30. Orelovic•ian. Bohemia.
 of an alult individual. x^{1} g. Orenvirian. Bohemia.

$$
\text { PI.rot: } \mathrm{x} \text {. }
$$

The Roman mumerals indicate the apmematages in thair eonserotior miler.

1. 1st patir of appemdages or antemmules.
II. Ol pair of appendages, or antemnar.
III. 3l pair of appentages. or mandibles.
IV. V. ete.. maxillae, maxillipeds, swimming feret. Dte.
(0) unpaired ege: ofe pated eyes: llo. labrum.
 protaspis stage in a 0 ordaner with the hest evilence at present attain able as explatined in the text. The VIth and the VIIth pairs of appendages belong to the abdomen, which is marked off be a transverse line : mit, metastoma: !/ free-chereks.
 puder. Nauplius larva, just hatehed : ventral side. Behind the mandihes (III) are indications of five thoracic somites, !/.

Forere 3. Aphis comeriformis: after (laus (from Faxon). Phyllopule. Second larval stage (metanatuplius): ventral side. The second maxilla. V, is wanting : f. frontal sense organs.
 I'higloporda. Nauplius stage.

Flacre j). Artemia !!rocilis: after Packard. I'hylloporde. Nauplius stage: showing obscure segmentation.

Figere 6. Limmaila hermommi: after Lereboullet (from Packard). I'hylloponl:. Nauplius: dorsal side: first pair of appendages obsolescent: labrum, /16. greatly developed.

Ficares 7. Lopidmres productus: after Bratuer (from Bernard). I'hyllopende. Nauplius with obscure segmentation of the trunk, y.

Figcre: 8. L"pfodero hyalion: after Sars (from Balfour and Bronn). Phyllopoda. C.lalower". Nauplius larva from winter egg: ! , rudimentary feet.
 perde, chrnocerce. Nauplius stage of embryo. with rudimentary appendages.
Figere 10. Mosine rectirostris: after (irobben (from Faxon). Phylloperdet, Cladocera. Embryo from the summer egg in the nauplius stage. developed in the brood-avity of the parent: appendages rudimentary.

Figere 11. ('yrlops trmicomis: after (lans (from Balfour). (opm pode, Natentio. Natuplius, first stage. This and the next are the original forms described as Ni,nplins, by O. F. Müller, and believed at that time to be adult.
Figure 12. ('yclopsis tenuicomis: after Claus from Balfour). (opmpoula, Netantia. Nauplins, second stage: IV, maxilliar.

Figure 13. (eptorlilus septentriomalis: after (irobben (from Faxom). Gopepeded, Nutcentic. Nauplius. just hatehed : ventral view.
Figicre 14. Achtheres percarum: after (laus (from Faxon). (oope pode, Poresitice. Larva at the time it leaves the egg, with only two an terior unbranched pairs of appendages of the typical nauplins present. Under the skin are the rudiments of six pairs of appendages: III. man dibles : IV, maxillat : V, VI, maxille : VII, VIII, swimming feet.

Figure 15. Balan"s belenoides: after Hork (from Faxon). (irripedic. Nauplius.

Figure 16. Leftherlisens porcellana: after F. Müller (from Fason). (irripedia, Rhizorephleth. Nauplius, ventral side: showing outline of dorsal shield.

Figure 17. S'acenliun purpurea: after F. Müller (from Huxley and Balfour). Cirviperdia, Rhizonephletw.
 First larval (nauplius) stage, with bivalve shell and unbranched second and third pairs of appendages.

Figure 19. Nelotlia agooflroyi: after Metschnikoff (from Faxom). Leptostract. Side riew of the so-called nanplins stage of the embryo within the egg. Rudiments are present of the two pairs of antenna, I, II, the mandibles. III.

Figere 20. Euphunsia: after Metschnikoff (from Faxon). Schlizopodd. Nauplius, just hatched.

Figure 21. Enplennsiat: after Metschnikoff (from Faxon). Sichizo. podd. Nauplius at a later stage: ventral view: mit, metastoma: IV. V, maxilla : VI, maxilliped. In the next, or Protozoen, stage, the appendages, IV, V. VI, are true phyllopocliform feet.

Figure 29. Mysis forruginea: after Van Beneden (from Faxon). Shchzopode. Nauplins like embryo: side view. The appendages are unsegmented, and the third pair quite rudimentary. A number of later metamorphoses are undergone in the nauplius skin. until the full number of appendages is developed.
Figere 23. Penens: after F. Müller (from Faxom). Decolpocha, Marrourco. Nauplius: from dorsal side.
 Ventral view of embryo artificially removed from the egg: IV, V, VI, buds representing the two pairs of maxillar and first pair of maxillipeds of the adult.
 Macrource. Nauplius stage of embryo within the egg.
Figure 26. Astacus fluriutilis: after Reichenbach (from Faxon). Dectapoda. Macrourre. Nauplius stage of embryo.

 tral view of embryo: showing the budding of the legs.

Fullery 28. Limmlns polyphemms: after Packard (from Balfour). Fiphosera. Ventral view of embryoin the eqge : showing the rudiments of six pairs of legs: m. mouth.
 Xiphosmr. Oblique side view of embryo, with the mouth and rudimen. tary limbs on the ventral plate.

The figures of embryonic Limmlas are introduced for comparison. They are so different from the nauplius that detailed notice seems un neressaty.

[^0]: *The adult Apres properly has five pairs of cephalic limbs. I sixth

